УДК 621.771.01

Нехаев Н. Е. Измайлова М. К. Важнова О. А.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ФОРМОИЗМЕНЕНИЯ ПРИ ПРОКАТКЕ ПОЛОСОВЫХ ПРОФИЛЕЙ В ЧЕТЫРЕХВАЛКОВЫХ КАЛИБРАХ

В настоящее время в машиностроении и других отраслях народного хозяйства широко применяются полосовые профили прямоугольного сечения повышенной и высокой точности [1]. Профили изготавливают волочением из горячекатаных подкатов, получаемых прокаткой по традиционной схеме ребровой калибр — гладкая бочка. При прокатке полосовых профилей с соотношением ширины к толщине близким к единице наблюдаются случаи скручивания или серпения полос при выходе из чистового калибра [1]. Предотвратить этот дефект можно при использовании четырехвалковых калибров (ЧВК).

Применение ЧВК позволяет за минимальное число проходов сформировать требуемую форму профиля и максимально приблизить ее к размерам готового профиля. Обжатие полосы по всему периметру способствует выравниванию неравномерности деформации по сечению.

Данные о практическом применении четырехвалковых калибров свидетельствуют о возможности и целесообразности их использования при горячей прокатке целого ряда сложных профилей [1–3]. В частности, на Омутнинском металлургическом заводе при производстве полосовых профилей используют четырехвалковые калибры [1].

Однако, основной трудностью при прокатке профилей в ЧВК является обеспечение качественного заполнения калибра вблизи разъемов валков. Проблема качественного заполнения ЧВК решается путем теоретических и экспериментальных исследований формоизменения металла в калибрах [1–4].

Целью работы является экспериментальное исследование и получение формул для определения формоизменения при прокатке полосовых профилей в четырехвалковых калибрах (рис. 1).

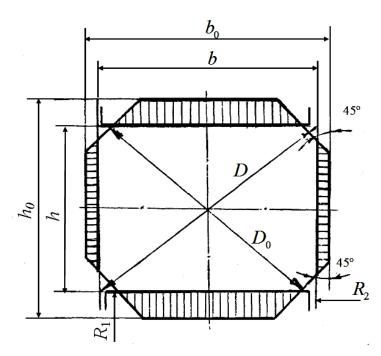


Рис. 1. Схема формоизменения прямоугольной полосы в четырехвалковом калибре

Экспериментальные исследования проведены на полупромышленном стане 300, оборудованном четырехвалковой клетью. Четырехвалковый калибр создавался двумя приводными горизонтальными валками диаметром 320 мм и двумя холостыми вертикальными валками диаметром 150 и 100 мм. Материал валков — сталь 45. Привод стана — от электродвигателя мощностью 120 кВт и числом оборотов 734 об/мин. Передаточное число редуктора — 23,34.

Образцы изготавливались из стали марки Ст 3 длиной 300 мм и нагревали в электропечи до температуры 1100 °C. На поверхности образцов для определения коэффициента вытяжки наносили риски на расстоянии 200 мм друг от друга.

В качестве независимых переменных были приняты (рис. 1) геометрические размеры очага деформации и калибра: R_1 , R_2 – радиус горизонтальных и вертикальных валков; h_0 , b_0 – толщина и ширина заготовки; h, b – высота и ширина калибра; D_0 – размер заготовки по диагонали; D – диагональ калибра, $D = \sqrt{h^2 + b^2}$.

На основании анализа существующих калибровок полосовых профилей, а также в соответствии с конструктивными характеристиками полупромышленного стана 300 и условиями осуществления процесса прокатки, значения размерных параметров ограничены пределами:

$$20 \text{ mm} \le h \le 40 \text{ mm}; \ 20 \text{ mm} \le b \le 60 \text{ mm};$$

$$22 \text{ mm} \le h_0 \le 48 \text{ mm}; \ 21 \text{ mm} \le b_0 \le 66 \text{ mm};$$

$$22,6 \text{ mm} \le D_0 \le 64,9 \text{ mm}; \ 75 \text{ mm} \le R_2 \le 95 \text{ mm}.$$

$$(1)$$

В качестве безразмерных относительных параметров приняты следующие величины:

$$m_1 = \frac{h_0}{h}; \quad m_2 = \frac{b_0}{b}; \quad m_3 = \frac{b}{h}; \quad m_4 = \frac{D_0}{D} = \frac{D_0}{\sqrt{h^2 + h^2}}; \quad m_5 = \frac{R_1}{R_2}; \quad m_6 = \frac{R_1}{h}.$$
 (2)

С учетом выражений (1) и (2) и $R_1 = 160$ мм находим пределы изменения параметров:

При проведении опытов использовалась теория планирования эксперимента.

Качественный анализ и приближенные оценки зависимостей коэффициентов формоизменения от различных факторов показали, что в качестве плана эксперимента может быть принята четверть полного факторного эксперимента.

Число экспериментальных точек равно: $N=2^{6-2}=16$. При этом матрица планирования (табл. 1) задана с генерирующими соотношениями $x_5=x_2x_3x_4$ и $x_6=x_1x_3x_4$ при определяющем контрасте $x_1x_2x_3x_4x_5x_6=1$.

Кодированные переменные $-1 \le x_i \le +1$ (i = 1,2,...6) связаны с параметрами m_i следующими формулами:

$$x_1 = 20m_1 - 23; \quad x_2 = 40m_2 - 43; \quad x_3 = 4m_3 - 5;$$

 $x_4 = 20m_4 - 17; \quad x_5 = 4,44m_5 - 8,46; \quad x_6 = 0,5m_6 - 3.$ (4)

В качестве функций отклика приняты (табл.2) коэффициенты вытяжки $\lambda = \frac{L_1}{L_0}$, за-

полнения калибра $\delta = \frac{F_1}{F}$ и приращения диагоналей $\theta = \frac{D_1}{D_0}$, где L_0 , L_1 — соответственно

расстояние между рисками на поверхности полосы до и после прокатки; D_1 – размер профиля по диагонали; F – площадь калибра; F_1 – площадь сечения профиля.

Таблица 1

Матрица планирования эксперимента

№	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	$m_1 = \frac{h_0}{h}$	$m_2 = \frac{b_0}{b}$	$m_3 = \frac{b}{h}$	$m_4 = \frac{D_0}{D}$	$m_5 = \frac{R_1}{R_2}$	$m_6 = \frac{R_1}{h}$
1	-1	-1	-1	-1	-1	-1	1,1	1,05	1,0	0,8	1,68	4,0
2	+1	-1	-1	-1	-1	+1	1,2	1,05	1,0	0,8	1,68	8,0
3	-1	+1	-1	-1	+1	-1	1,1	1,10	1,0	0,8	2,13	4,0
4	+1	+1	-1	-1	+1	+1	1,2	1,10	1,0	0,8	2,13	8,0
5	-1	-1	+1	-1	+1	+1	1,1	1,05	1,5	0,8	2,13	8,0
6	+1	-1	+1	-1	+1	-1	1,2	1,05	1,5	0,8	2,13	4,0
7	-1	+1	+1	-1	-1	+1	1,1	1,10	1,5	0,8	1,68	8,0
8	+1	+1	+1	-1	-1	-1	1,2	1,10	1,5	0,8	1,68	4,0
9	-1	-1	-1	+1	+1	+1	1,1	1,05	1,0	0,9	2,13	8,0
10	+1	-1	-1	+1	+1	-1	1,2	1,05	1,0	0,9	2,13	4,0
11	-1	+1	-1	+1	-1	+1	1,1	1,10	1,0	0,9	1,68	8,0
12	+1	+1	-1	+1	-1	-1	1,2	1,10	1,0	0,9	1,68	4,0
13	-1	-1	+1	+1	-1	-1	1,1	1,05	1,5	0,9	1,68	4,0
14	+1	-1	+1	+1	-1	+1	1,2	1,05	1,5	0,9	1,68	8,0
15	-1	+1	+1	+1	+1	-1	1,1	1,10	1,5	0,9	2,13	4,0
16	+1	+1	+1	+1	+1	+1	1,2	1,10	1,5	0,9	2,13	8,0

Таблица 2 Размеры образцов и коэффициенты деформаций

No	До	прокати	си,	После прокатки,				Коэффициенты			
		MM			M	M		деформации			
	h_0	b_0	D_0	h	b	D_1	L_1	$\lambda = \frac{L_1}{L_0}$	$\delta = \frac{F_1}{F}$	$\theta = \frac{D_1}{D_0}$	
1	43,9	42,0	45,5	40,0	40,0	44,3	222,6	1,091	0,920	1,004	
2	24,0	21,1	22,5	20,0	20,0	22,8	234,1	1,134	0,919	1,002	
3	44,0	44,1	45,3	39,8	40,0	45,0	231,0	1,148	0,915	0,982	
4	24,0	22,0	22,6	19,8	19,8	23,0	236,4	1,170	0,928	1,007	
5	22,0	31,3	29,1	20,1	29,8	28,6	223,2	1,112	0,924	0,997	
6	47,7	62,8	57,5	40,0	59,0	56,5	234,0	1,175	0,916	0,996	
7	22,1	33,1	28,9	19,5	30,0	28,7	239,8	1,140	0,938	1,019	
8	47,8	65,9	57,0	39,9	60,1	56,2	238,0	1,186	0,905	0,996	
9	22,1	21,0	25,6	20,2	20,0	25,3	228,5	1,116	0,973	0,984	
10	48.0	41,7	50,7	39,5	39,7	51,0	241,2	1,205	0,986	1,000	
11	22,1	22,0	25,6	19,8	20,1	25,3	238,5	1,178	0,980	0,988	
12	47,8	44,1	50,9	40,1	39,8	50,6	268,2	1,218	0,980	1,002	
13	43,9	63.1	64,9	39,9	59,8	65,8	223,0	1,135	0,985	1,008	
14	23,9	31,6	32,4	20,1	30,1	34,2	248,4	1,186	0,988	1,029	
15	43,9	65,7	64,9	39,8	59,3	66,8	237,0	1,171	0,905	0,990	
16	24,0	33,0	32,6	20,4	30,0	34,5	252,5	1,212	0,982	1,044	

Результаты эксперимента (табл. 2) обработаны с использованием стандартного пакета прикладных программ «Статистика» и получены следующие формулы для определения коэффициентов формоизменения:

$$\lambda = -7,646 + 4,338m_1 + 8,844m_2 + 0,735m_3 - 1,020m_4 + 0,779m_5 - 0,003m_6 - 4,850m_1m_2 + 1,175m_1m_4 + 0,194m_1m_5 - 0,670m_2m_3 - 0,922m_2m_5;$$
(5)

коэффициент корреляции R=0.996; средняя ошибка аппроксимации по $\lambda-1$ равна 2,68 %; среднее квадратичное отклонение $\sigma=0.0061$;

$$\delta = 1,520 - 6,534m_1 + 3,210m_2 + 0,932m_3 + 1,955m_4 - 0,112m_5 + 0,004m_6 + + 2,50m_1m_2 + 3,050m_1m_4 + 0,70m_1m_5 - 0,880m_2m_3 - 4,60m_2m_4 - 0,667m_2m_5;$$
 (6)

коэффициент корреляции R = 0.985; средняя ошибка аппроксимации равна 0.5 %; среднее квадратичное отклонение $\sigma = 0.013$;

$$\theta = 8,914 - 4,947m_1 - 4,203m_2 - 0,295m_3 - 2,995m_4 - 1,553m_5 + 0,003m_6 + 1,80m_1m_2 + 2,650m_1m_4 + 0,467m_1m_5 + 0,30m_2m_3 + 0,933m_2m_5;$$
(7)

коэффициент корреляции R = 0.993; средняя ошибка аппроксимации равна 0.19 %; среднее квадратичное отклонение $\sigma = 0.0037$.

Сравнение экспериментальных и расчетных данных приведены в табл. 3.

Таблица 3 Экспериментальные и расчетные значения коэффициентов деформации

№	$\lambda_{\scriptscriptstyle 9}$	λ_p	$\left \frac{\lambda_{9} - \lambda_{p}}{\lambda_{9} - 1} \right $	$\delta_{\scriptscriptstyle 9}$	δ_p	$\left \frac{\delta_{\mathfrak{I}} - \delta_{p}}{\delta_{\mathfrak{I}}} \right $	$ heta_{\scriptscriptstyle 9}$	θ_p	$\left \frac{ heta_{\scriptscriptstyle 9} - heta_p}{ heta_{\scriptscriptstyle 9}} \right $
1	1,091	1,089	0,0267	0,920	0,927	0,0081	1,004	1,006	0,0019
2	1,134	1,128	0,0469	0,919	0,914	0,0053	1,002	1,003	0,0007
3	1,148	1,143	0,0320	0,915	0,907	0,0084	0,982	0,982	0,0003
4	1,170	1,167	0,0183	0,928	0,938	0,0108	1,007	1,009	0,0021
5	1,112	1,103	0,0780	0,924	0,928	0,0048	0,997	1,001	0,0041
6	1,175	1,175	0,0007	0,916	0,915	0,0015	0,996	0,995	0,0011
7	1,140	1,140	0,0005	0,938	0,939	0,0015	1,019	1,018	0,0013
8	1,186	1,179	0,0378	0,905	0,907	0,0018	0,996	0,999	0,0034
9	1,116	1,115	0,0107	0,973	0,972	0,0006	0,984	0,983	0,0009
10	1,205	1,198	0,0323	0,986	0,989	0,0031	1,000	1,003	0,0034
11	1,178	1,168	0,0543	0,980	0,982	0,0025	0,988	0,992	0,0042
12	1,218	1,219	0,0044	0,980	0,980	0,0001	1,002	1,000	0,0016
13	1,135	1,132	0,0254	0,985	0,979	0,0056	1,008	1,008	0,0001
14	1,186	1,182	0,0190	0,988	0,997	0,0088	1,029	1,031	0,0021
15	1,171	1,170	0,0087	0,905	0,914	0,0103	0,990	0,992	0,0018
16	1,212	1,205	0,0335	0,982	0,976	0,0066	1,044	1,045	0,0010

Для практических расчетов могут быть использованы также формулы без учета взаимодействия факторов, которые имеют достаточно хорошую сходимость с опытными данными:

$$\lambda = -0.4356 + 0.4938m_1 + 0.6725m_2 + 0.0143m_3 + 0.3313m_4 + 0.0114m_5 - 0.0025m_6; \tag{8}$$

коэффициент корреляции R = 0.96; средняя ошибка аппроксимации по $\lambda - 1$ равна 6,18%; среднее квадратичное отклонение $\sigma = 0.0136$;

$$\delta = 0.6654 + 0.080m_1 - 0.1950m_2 - 0.0145m_3 + 0.5175m_4 - 0.0239m_5 + 0.0038m_6; \tag{9}$$

коэффициент корреляции R = 0.879; средняя ошибка аппроксимации равна 1,19%; среднее квадратичное отклонение $\sigma = 0.021$;

$$\theta = 0.7612 + 0.130m_1 + 0.020m_2 + 0.0275m_3 + 0.0525m_4 - 0.0133m_5 + 0.0029m_6; \tag{10}$$

коэффициент корреляции R = 0.75; средняя ошибка аппроксимации равна 0.86%; среднее квадратичное отклонение $\sigma = 0.014$.

Анализ формулы (8) показал, что наибольшее влияние на коэффициент вытяжки λ оказывает параметр $m_1 = h_0/h$, затем – $m_2 = b_0/b$ и $m_4 = D_0/D$, менее значимы факторы – $m_6 = R_1/h$, $m_3 = b/h$ и $m_5 = R_1/R_2$.

Коэффициент заполнения калибра $\delta = \frac{F_1}{F}$ (формула (9)) зависит больше всего от параметра m_4 , менее значимы факторы m_6 , m_5 , m_2 , m_1 и m_3 .

Коэффициент приращения диагоналей $\theta = \frac{D_1}{D_2}$ (формула (10)) зависит больше всего от параметров m_3 , m_1 и m_6 , менее значимы факторы m_5 , m_4 и m_2 .

Статистический анализ показывает достаточно высокое соответствие опытных и расчетных данных. Таким образом, полученные формулы можно рекомендовать для расчетов коэффициентов формоизменения при прокатке полосовых профилей в четырехвалковых калибрах.

ВЫВОДЫ

На основании экспериментальных данных получены формулы для определения коэффициентов формоизменения при прокатке полосовых профилей в четырехвалковых калибрах. Статистический анализ показывает достаточно высокое соответствие опытных и расчетных данных в условиях проведенного эксперимента. Полученные формулы могут быть использованы при разработке калибровки полосовых профилей в четырехвалковых калибрах в производственных условиях Омутнинского, Череповецкого и Ижевского сталепрокатных заводов.

ЛИТЕРАТУРА

- 1. Илюкович Б. М. Прокатка и калибровка: Справочное издание в 6-ти томах. Т. 2 / Б. М. Илюкович. Днепропетровск : Днепр-ВАЛ, 2003. - 569 c.
- 2. Илюкович Б. М. Прокатка и калибровка : справочное издание в 6-ти томах. Т. 1 / Б. М. Илюкович, Н. Е. Нехаев, С. Е. Меркурьев; под. ред. Б. М. Илюковича. – Днепропетровск: Днепр-ВАЛ, 2002. – 518 с.
- 3. Огинский И. К. Оборудование и технология на основе многовалковых калибров для производства простых, фасонных и специальных профилей / И. К. Огинский // Металлургическая и горнорудная промышленность. – 2002. – № 8–9. – С. 231–234.
- 4. Илюкович Б. М. Определение формоизменения при прокатке фланцевых профилей в четырехвалковых калибрах / Б. М. Илюкович, М. К. Измайлова, Н. Е. Нехаев //Изв. вуз. Черная металлургия. — 1991. — № 1. — *C.* 45–47.

Нехаев Н. Е. - канд. техн. наук, доц. ДГТУ;

Измайлова М. К. – канд. техн. наук, доц. ДГТУ;

 магистр ДГТУ. Важнова О. А.

ДГТУ – Днепродзержинский государственный технический университет, г. Днепродзержинск.

E-mail: omd@dstu.dp.ua

Обработка материалов давлением